HIGH PERFORMANCE CONCRETE QUESTIONNAIRE

Version: 7-15-03

State: Oregon

1. Which of the following changes have been made to your concrete specifications in the last 10 years?

Check those that apply:

	Changes Made in	Included in Current
	Last 10 Years	Specifications
Use HPC-low permeability concrete	X	Χ
Use HPC-high strength concrete		F19940-410-00-1
Allow admixtures	X	X
Concrete strengths		
Bridge deck curing	X	X
Deck finishing requirements		
Limit cement/alkali content		
Testing and acceptance requirements	X	X
Heat of Hydration required for cement		
Chloride testing of hardened concrete		
Lightweight concrete		
Self-consolidating concrete (SCC) in use		
Flowing concrete in use		
Epoxy coated reinforcing steel used	X	X
Stainless Steel reinforcing steel used	X	X
Stainless clad reinforcing steel used		
Specify air void parameters (spacing factor		
and/or specific surface)		

2. Current Concrete Specifications:

						Min.	Max.	Maximum
		Air	Max.			Cement	Cement	Aggregate
	Class of	Content	W/C	Slump	Cement	Content	Content	Size
	Concrete	%	Ratio	(in.)	Type	(lb/cy)	(lb/cy)	(in.)
	Prestressed	4-7	0.40	5	江江江	660	None	3/4"
-	Decks	5	0.40		工中江	630	None	1 1/2"
	Parapets							
(Substr./General	4.5	0.50	4	工+工	570	None	1 1/2"
Sanc	Paving	4.5	0.44	4	工4江	570	Nome	1 1/2"
ſ	Latex Hydraulic							
	Cement Concrete							
	Silica Fume							
	Concrete							

Highest compressive strength used for prestressed	concrete girders:	9000 pis.i.
Compressive concrete strength used for decks:	4500 pisil	

3. All states have experienced some of the below concrete distresses. To what extent has your State experienced these (Rank from 1 to 5 with 1=rare and 5=often):

Type of Distress	1	2	3	4	5
Corrosion of Reinforcing Steel				X	
Sulfate Attack	X				
Alkali-silica Reactivity	X				
Freezing and Thawing		X			· · · · · · · · · · · · · · · · · · ·
Cracking (girders, substructure, pvmt)*					X
Deck Cracking (Early age < 5 years)		X			
Overload	X				
Poor Construction Quality			X		

* 1950's +1960's vintage RCD6's

4. Construction Requirements: Workability Requirements:

	ADMI	XTURES.	AND SL	AG USAG	E
ADMIXTURE/SLAG		Non-Aggressive Environment		ressive conment	ELEMENTS WHERE USED
	YES	NO	YES	NO	All, D, G, P, F, CP, DS*
Air-Entraining	X		X		
Retarding		×		Χ	
Accelerating		X		X	
Water Reducing (Normal)		×		×	1
Water Reducing (High Range)	×		X		۵
Water Reducer + Retarder		X		X	
Water Reducer + Accelerator		X		X	
Viscosity Modifying Admixture		X		Х	
Silica Fume	X		X		ρ
Fly Ash, Class F	X	· · · · · · · · · · · · · · · · · · ·	X		0
Fly Ash, Class C	X		X		D
Fly Ash, Class N	×		×		Δ
Metakaolin		X		X	
Rice Hull Ash		X		Х	
Other Ash Materials		X		×	

Bark Ash	X	X	
Bottom Ash	X	X	7,741,14
Pet Coke Ash	X	X	***
Slag	X	×	
Latex	X	X	
Corrosion Inhibitors	X	X	

^{*}Key: Deck(D); Girder(G); Pier(P); Footing(F); Concrete Pile(CP); Drilled Shaft(DS)

ADMIXTURE TYPE & SLAG	RANGE % (Wt. Of Cement Replaced)
Fly Ash	30%
Slag	
Silica Fume	4%
Metakaolin	
Rice Hull Ash	
Other Ash Materials	

Is water allowed to be added at the job site?	Yes	No X
Are air-entraining admixtures allowed to be added at the job site?		
Are accelerators added at the job site?		X
Are there any special finishing requirements? Explain:		X_
Are there any time constraints between finishing and applying curing?		
Explain: (Minimum and Maximum Times finishing and texturing. Foge placement and texturing.	s) Immediate	secur between

		CURING	G REQ	UIREMEN	T8	g Blanket
Structural	Exist.	Curing	Fog	Wet	ERL	
Element	Spec.	Comp.	Mist	Burlap	LB/SF/HR	Cure Time
	Y/N	Y/N	Y/N	Duration		(Days)
Deck	Y	2	Y	14	0.20	14
SF Overlay	Y	N	N	7	0.15	7
Latex Conc.	\ \ \	2	2	-	0.15	
Overlay	1			(0.(3	,
Dense Conc.						
Overlay						
Paving						
Shoterete						
Shotcrete						
With SF						
Massive Element	 					

Key: ERL= Evaporation Rate Limit (LBS/SF/HR)

Any construction requirements for reducing evaporation?

Yes X	No			
How and how o	often is evaporation rate measured	? Measurem	ients are	taken from

5. Has fiber-reinforced concrete been specified for bridge decks or overlays and paving (either steel or plastic fibers)(Indicate R = Regular and E = Experimental.)

Bridge decks:	Yes	No _	<u>X</u>	Fiber Type
Overlays:	Yes	No	X	Fiber Type
Paving:	Yes	No	× _	Fiber Type

6. Identify concrete cover requirements:

MINIMUM CONCRETE COVER REQUIREMENTS					
STRUCTURAL ELEMENT	COVER (in.)				
	Non-Aggressive	Aggressive			
	Environment	Environment			
Decks - Top	2.5"	2.5*			
Decks – Bottom	1.5"	2.0"			
Reinforced Concrete Beams	2.0"	2.0"			
Prestressed Concrete Beams - CIP	1	1			
Prestressed Concrete Beams - Precast					
Substructure – Piers					
Substructure – Abutments					
Substructure - Footings	V				

REQUIRED REINFORCING STEEL						
TYPE REINFORCING STEEL						
BS, ECS, GS, SS, SCD, MMFX						
Non-	Aggressive	Experimental				
Aggressive	Environment	Use Only				
Environment						
BS	ECS or SS					
	ECS OISS					
	ECS or BS					
	ECS or BS					
	CCZ or 82					
	BS					
V	BS					
	BS					
	TYPE I BS, ECS Non- Aggressive Environment	TYPE REINFORCING BS, ECS, GS, SS, SCD, Non- Aggressive Environment BS ECS or SS ECS or BS				

Key: BS = Black Reinforcing Steel; ECS = Epoxy Coated Reinforcing Steel; GS = Galvanized Reinforcing Steel; SS = Stainless Reinforcing Steel; SCD = Stainless Clad Reinforcing Steel; MMFX = MMFX Microcomposite Steel Rebar

7.	Is there a limit on the perce	nt of alkali allowed in the cement?
	Yes	No X

8. Are aggregates tested for reactivity?

Yes	No	<u>X</u>

How many sources of aggregates?

9. Indicate specification permeability requirement limits for:

Structural Element	Coulombs					
	Non-Aggressive Environment	Aggressive Environment				
Bridge Decks	None	None				
Prestressed Concrete Members	ll ll	1				
Substructure Elements						
Pavements	V	V				

10 (a): What QC/QA tests do you specify?

Fresh Concrete		Hardened Concrete			
	Tests		Tests		
Slump	T119	Compressive Strength	T22		
Spread		Air/Void System			
Unit Weight	T121	Chloride Permeability	T277		
Air Content	T152	Maturity			
Water Content		Freeze/Thaw			
W/CM Modified T		Shrinkage			
		ASR			

10 (b): What are your acceptance criteria for cracks?

Engineer acceptance

10 (c): Do you specify pre-construction mock-ups?

If yes, provide details.

10 (d): Do you specify design properties at 28 days or 56 days or some other duration?

10 (e): Do you allow 4x8 cylinders for compressive strength tests?

10 (f): What types of end-caps do you specify/allow – Sulfur, Neoprene, Ground Ends?

10 (g): Do you specify match-cured cylinders?

No

10 (h): How do you enforce/monitor wet-water curing?

10 (i): Do you require warrantees against defects – e.g. bridge deck cracking? If yes, provide details.

N.

10 (j): What is your experience/evaluation/specification regarding the Microwave Test for w/cm?

None

11. How often are the following types of concrete overlays used? (Rank from 1 to 5 with 1=rare and 5=often)

Type of Overlay	1	2	3	4	5	Comment on Performance E, G, or P**
Latex-modified Concrete	X		, ,			
Silica Fume Concrete					X	
Dense Concrete						
Fly Ash Concrete		·····				
Slag Concrete						
Epoxy (Thin Bonded)	X					
Polymer (Thin Bonded)	X					
Other						UPA-144/

^{**}Key: Excellent(E); Good(G); Poor(P)

12. Rank the need or interest for your State to learn more about the following from 1 to 5 (1=low; 5=very high)

BENEFICIAL	1	2	3	4	5	
ATTRIBUTES						Overall Ranking (1-11)
Low Permeability					V	2
(Dense Concrete)					N	2
High Durability					X	
High Corrosion				X		2
Resistance-				^		>
Alkali-silica		\ <u>\</u>				12
Reactivity Resistance		^				12
Higher Concrete			\/			_
Strengths			X			>
Highly Flowable		\				13
Concrete		X				1>
Crack Control				X		4
Skid Resistance		X				
Rideability		X				8
Toughness of Concrete*		X				9
Minimum Maintenance		X				10
Longer Service Life			X			6
Savings (Life Cycle			V			
Costs)						/

^{*}Add fibers: steel, glass, plastic, polypropolene, etc.

			n examining concr rmance Concrete?	rete specifications and
Material Construc Pavemen Structure	nose that apply: sX etion ntX esX			
14. Have you co	onsidered adop	ting/implemen	ting the following	SHRP products?
2005	A Guide to l Aggregates?	_	e Optimal Gradati	on of Concrete
	Yes	No	UnknownX	Implemented
2014	Specification	ns for High Per	formance Concret	e?
	Yes X	No	Unknown	Implemented
2017		ASR-Safe conci		
	Yes	No X	Unknown	Implemented
2036	_	_	itation and Protect	
	Yes	No	Unknown	Implemented
Contact Person:	Mattheo	~ Stuc	-ker	
Address:	355 Ca	pital St	NE, ROOM	, 329
Telephone N Email Addre	oud.	3) 986- : how. stud		state, or. us

Who at State and Division levels i.e., Materials, Construction, Pavement,

13.

Thank you for completing the questionnaire. A summary of compiled results will be made available upon completion.